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ABSTRACT

COMPILING AN ARRAY LANGUAGE TO A GRAPHICS PROCESSOR

by

Bradford Larsen

University of New Hampshire, December, 2010

Graphics processors are significantly faster than traditional processors, particularly

for numerical code, and in recent years have become flexible enough to permit general-

purpose use, rather than just graphics use. NVIDIA’s CUDA makes general-purpose

graphics processor computing feasible, but it still requires significant programmer effort.

My thesis is that array programming can be an effective way to program graphics pro-

cessors, and that a restricted, functionally pure array language coupled with simple opti-

mizations can have performance competitive with handwritten GPU programs. I support

this thesis through the research language Barracuda, an array language embedded within

Haskell that generates optimized CUDA code.
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INTRODUCTION

Graphics processing units (GPUs) are highly parallel accelerator devices, offering high-

performance computing capabilities superior to those of traditional processors. Due to

increased hardware flexibility and improved programming tools, GPUs have frequently

been used for non-graphics computation, e.g., for SAT solving [Manolios and Zhang, 2006],

state space search [Edelkamp et al., 2010], and physics simulations [Elsen et al., 2006]. Early

work in general-purpose GPU programming repurposed graphics programming models

such as OpenGL or Direct3D (e.g., Manolios and Zhang [2006]); more recent efforts have

involved NVIDIA’s CUDA dialect of C++ (e.g., Edelkamp et al. [2010]). Although CUDA

is a significant improvement over previous methods, it is too low-level for easy use: for

example, to find the largest element of an array efficiently requires over 150 lines of CUDA;

in a typical programming language, this problem can be solved with at most a few lines of

code.

What an ideal general-purpose GPU programming model might be is still an open

question. One promising approach is that of array programming, where one describes how

to transform an array as a whole using collective array operations. Array programming is

not a new idea, going back at least to APL [Iverson, 1962]. It has particular advantages in

the context of high-performance parallel processing, because many collective array opera-

tions are implicitly data-parallel and have well-known parallel implementations [Blelloch,

1989, 1996, Sengupta et al., 2007].

Recent efforts have explored the possibility of targeting GPUs through array program-

ming [Lee et al., 2009a, Mainland and Morrisett, 2010, Catanzaro et al., 2010]. This the-

sis shows that a simple array programming model supported by a few simple optimiza-
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tions can enable users to write GPU kernels whose performance is competitive with hand-

written CUDA code but whose source code is a fraction of the size of CUDA. In particular,

this work makes the following contributions:

• I describe how to automatically make use of GPU shared memory cache in stencil

operations to reduce memory traffic, and show experimentally that it can increase

performance by up to a factor of eight.

• I describe a simple, yet effective array fusion scheme to further reduce memory traffic

and eliminate the need for temporary arrays, improving performance by up to an

order of magnitude as observed in experiments.

• I describe how certain nested data-parallel programs can be easily transformed into

equivalent non-nested programs through hoisting.

These optimizations should be applicable to any array language targeting GPUs or sim-

ilar accelerator hardware that allows (or requires) explicit cache control, such as the Cell

processor. These optimizations are implemented in a compiler for the research language

Barracuda, an applicative array programming language for GPUs that is compositional,

allowing array primitives to be freely nested. Barracuda is implemented as an embedded

language within Haskell.
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CHAPTER 1

BACKGROUND

1.1 GPUs: Not Just for Graphics

In recent years, graphics processing units (GPUs) have been used for computationally in-

tensive tasks other than graphics, such as SAT solving [Manolios and Zhang, 2006], state

space search [Edelkamp et al., 2010], and physics simulations [Elsen et al., 2006]. This de-

velopment has been motivated by the promise of superior performance of GPUs over more

traditional processors, particularly for floating-point operations.

Early work in general-purpose GPU programming repurposed graphics programming

models such as OpenGL or Direct3D (e.g., Manolios and Zhang [2006]); more recent efforts

have involved NVIDIA’s CUDA dialect of C++ (e.g., Edelkamp et al. [2010]). Although

CUDA is a significant improvement over previous methods, it is too low-level for easy

use: for example, to find the largest element of an array efficiently requires over 150 lines

of CUDA; in a typical programming language, this problem can be solved with at most a

few lines of code.

1.2 General-Purpose GPU Programming with CUDA

The CUDA programming language from NVIDIA is a C++ dialect that explicitly supports

use of graphics cards for more general purposes [NVIDIA, 2010]. In synopsis, CUDA

allows use of a GPU through data parallel execution of a restricted class of C++ procedures.

3
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Figure 1.1: A block diagram of the GPU

1.2.1 Devices and Address Spaces

CUDA programming extends the C++ programming model with the notion of a device

(i.e., a graphics processor) possessing many processing cores. In addition, each device

has several additional address spaces associated with it, including device memory, shared

memory, constant memory, and texture memory, which are distinct from each other and

from the system’s main memory, and data can only be transferred between the address

spaces in fixed, well-defined ways. The rough organization of a system with a GPU is

shown in Figure 1.1. The memory management procedures cudaMalloc and cudaFree

are provided to allocate and free device memory, and the procedure cudaMemcpy can

copy between main memory and device memory.

1.2.2 Kernels

A kernel is a C++ procedure that can be executed on the GPU. For example, a kernel used

to compute the sine of each element of an array is shown in Listing 1.1. Kernel code is

marked with the __global__ qualifier, and is subject to several restrictions, including

the following:1

• The return type must be void

1These conditions are somewhat relaxed with the latest NVIDIA GPUs and the most recent versions of
CUDA; for instance, recursion is allowed starting with CUDA 3.0 on Fermi-based GPUs, and print statements
can be executed from kernel code in debug mode.
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__global__ void
array_sine_kernel (const float *in, float *out, const unsigned len)
{

// Get the index into the array for the executing thread.
const unsigned i = blockIdx.x * blockDim.x + threadIdx.x;

if (i < len)
out[i] = sin(in[i]);

}

Listing 1.1: A CUDA kernel to compute the sine of each element of an array

• Pass-by-reference arguments are not permitted

• Main memory is inaccessible

• The only allowed side effect is assignment

• Objects with virtual methods may not be used

• Recursion is not allowed

The CUDA programming model is mainly data parallel: a kernel specifies sequential

code to be run by thousands of lightweight kernel threads, in parallel, on different data. In

the kernel shown in Listing 1.1, each kernel thread is responsible for computing the sine

of a single element from in and writing the result to the appropriate element of out. The

element that a thread is to work on is determined from three special variables that are in

scope in the body of a kernel procedure: threadIdx, blockIdx, and blockDims. Each

of these variables is of type dim3, a struct with unsigned integer fields x, y, and z.

1.2.3 Problem Decomposition

To execute a kernel, the programmer must use another CUDA-specific construct, the kernel

invocation. Invoking a kernel is similar to calling a regular procedure—one specifies the

arguments to the kernel, but in addition, one must specify parameters that control the data

parallel execution using special kernel invocation syntax.

To make effective use of a GPU, a kernel must be executed by thousands of kernel

threads in data parallel fashion. Work is assigned to threads through a two-level decom-

position of the problem. At the lower level, threads are organized into one-, two-, or three-

5



dimensional thread blocks. At the higher level, thread blocks are organized into a one- or

two-dimensional grid. The CUDA runtime handles the scheduling of thread blocks to GPU

multiprocessors.

Continuing our example, we see CUDA code to invoke the sine kernel in Listing 1.2.

This is code suitable for the not-entirely-unreasonable use case where much of the process-

ing is done on a CPU, but one wishes to accelerate certain operations by performing them

on a GPU instead. The in and out parameters are pointers to main memory. However,

CUDA kernels cannot access main memory, so we need to allocate temporary arrays on

the GPU. (Use of temporary arrays is expensive and something to avoid as much as possi-

ble.) The first thing the wrapper code does is allocate temporary arrays on the GPU using

cudaMalloc. Next, the input array (residing in main memory) is copied to the temporary

input array (residing in device memory) using cudaMemcpy. The sine kernel is then in-

voked. Finally, the results in the temporary output array (residing in device memory) are

copied into the true output array (residing in main memory), and the temporary arrays are

freed using cudaFree.

In this example, the two-level data parallel decomposition of the problem uses a one-

dimensional grid of one-dimensional thread blocks, with each thread block comprising

128 threads. The size of the grid is dependent upon the length of the arrays, as each kernel

thread computes the transform for a single element of the array. For example, an array

256 elements long would be decomposed into two blocks of 128 threads each, as seen in

Figure 1.2.

1.2.4 Shared Memory

As mentioned previously, CUDA exposes an additional shared memory address space to

kernel code. Each thread block has shared memory that is accessible by all threads within

the block. It is much faster to access shared memory than device memory: accessing shared

memory can be as fast as accessing a register, whereas accessing device memory can take

hundreds of cycles. Hence, in kernel code where multiple threads within a block would

access the same memory locations, it makes sense to use shared memory instead of redun-

dantly accessing the slower device memory. Shared memory is analogous performance-
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void
array_sine_wrapper (const float *in, float *out, const unsigned len)
{

// Allocate memory on the GPU for the arrays.
float *in_d;
float *out_d;

const size_t arr_size = len * sizeof(float);

cudaMalloc ((void **)&in_d, arr_size);
cudaMalloc ((void **)&out_d, arr_size);

// Copy the input array into GPU memory.
cudaMemcpy (in_d, in, arr_size, cudaMemcpyHostToDevice);

// Set up and invoke the kernel.
const dim3 block_dim (128, 1, 1);
const dim3 grid_dim ((unsigned)ceilf((float)len / 128f), 1, 1);

array_sine_kernel<<<grid_dim, block_dim>>>(in_d, out_d, len);

// Copy results back into CPU memory.
cudaMemcpy (out, out_d, arr_size, cudaMemcpyDeviceToHost);

// Release the GPU memory.
cudaFree (out_d);
cudaFree (in_d);

}

Listing 1.2: A CUDA wrapper procedure to invoke the kernel of Listing 1.1

Grid of Thread Blocks

Array

0 1 126 127... 128 129 ... 254 255

Block 0

Thread 0 Thread 1 ... Thread 126 Thread 127

Block 1

Thread 0 Thread 1 ... Thread 126 Thread 127

Figure 1.2: A 256-element array decomposed into a grid of 2 128-element blocks
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0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7Thread IDs

Array Indexes

Thread Block 0

Figure 1.3: The memory access pattern of the input array for the forward difference routine.
With the exception of the first and last array elements, each element is read twice.

wise to L1 cache in a CPU, but differs sharply in the fact that shared memory caching must

be done by hand by the programmer.2

1.2.5 Example: Forward Difference

A more complicated element-wise transformation demonstrates the use of shared mem-

ory. The forward difference operator applied to a one-dimensional array is given by the

equation

∆arr(x) = arr(x+ 1) − arr(x),

where x and x + 1 are valid indexes for arr. This operator is an archetypal tool used in

finite difference methods for numerical approximation of differential equations.

A naive CUDA implementation of this routine would have each thread read two el-

ements from the input array residing in device memory. Analyzing the memory access

patterns of this routine, we see that with the exception of the first and last elements of the

input array, each input element would be read by two threads. This is shown in Figure 1.3.

By using the on-chip shared memory of a GPU multiprocessor, only one read, rather than

two, would be required.

Our strategy for using shared memory in this example is as follows. First, each thread

reads a single element of the input array if it is in bounds, storing it in shared memory. Sec-

ond, each thread synchronizes with the others in its block, necessary to make the writes
2Beginning with CUDA 3.0, implicit L1- and L2-caching is performed with the latest NVIDIA GPU archi-

tectures; however, NVIDIA still suggests explicit use of shared memory for best performance.
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__global__ void
forward_diff_kernel (const float *in, float *out, const unsigned len)
{

// Declare block-shared memory.
extern __shared__ float scratch[];

// Get the output index assigned to this thread.
const unsigned i = blockIdx.x * blockDim.x + threadIdx.x;

// Load one element into shared memory & synchronize.
if (i < len)

scratch[threadIdx.x] = in[i];
// Synchronize within the thread block to make writes visible.
__syncthreads();

// Compute the difference. Threads on the end of a block
// have to read from device memory.
if (i < len - 1)

// If the executing thread is at the rightmost edge of a
// thread block, read from device memory, otherwise read from
// shared memory.
out[i] = threadIdx.x == blockDim.x - 1

? in[i + 1] - scratch[threadIdx.x];
: scratch[threadIdx.x + 1] - scratch[threadIdx.x];

}
}

Listing 1.3: A CUDA kernel to compute the forward difference of an array

visible. Third, the threads responsible for in-bound elements compute the forward differ-

ence. At this step, threads that are at the rightmost edge of a thread block need to read

the forward value from device memory rather than shared memory, as it will not reside

in shared memory. Finally, each in-bound thread writes its result to the output array. The

kernel and the wrapper are shown in Listings A.1 and A.2. The wrapper code is nearly

identical to the wrapper code for the previous example, except for the additional kernel

parameter smem_size that specifies the amount of shared memory to dynamically allo-

cate for the kernel launch.

We see more CUDA extensions to C++ in this example. The __shared__ storage

specifier in a kernel indicates that the variable resides in the block-shared memory on

the GPU. Recall that this is fast memory available to all threads of a thread block. The

__syncthreads() primitive implements a barrier synchronization within a thread block.

Due to the memory access pattern of this example and because shared memory is shared

9



void
forward_diff_wrapper(const float *in, float *out, const unsigned len)
{

// Allocate device memory for the arrays.
float *in_d;
float *out_d;

const size_t in_size = len * sizeof(float);
// The output is one element shorter than input.
const size_t out_size = (len - 1) * sizeof(float);

cudaMalloc((void **)&in_d, in_size);
cudaMalloc((void **)&out_d, out_size);

// Copy input array into device memory.
cudaMemcpy(in_d, in, in_size, cudaMemcpyHostToDevice);

// Set up and invoke the kernel.
const dim3 block_dim(128, 1, 1);
const dim3 grid_dim((unsigned)ceilf((float)len / 128f), 1, 1);
// How much shared memory to allocate per block?
const size_t smem_size = 128 * sizeof(float);

forward_diff_kernel<<<grid_dim, block_dim, smem_size>>>
(in_d, out_d, len);

// Copy results back into CPU memory.
cudaMemcpy(out, out_d, out_size, cudaMemcpyDeviceToHost);

// Release the device memory.
cudaFree(out_d);
cudaFree(in_d);

}

Listing 1.4: A CUDA wrapper procedure to invoke the kernel of Listing A.1

10



only within a thread block and there is no way to synchronize among thread blocks,

threads with threadIdx.x of 127 must perform two reads from device memory.

1.2.6 Coalesced Memory Access

When certain conditions hold, accesses of device memory can be coalesced so that 16 ap-

parently independent memory accesses can be combined into one or two larger memory

accesses. This can have a dramatic impact on overall performance.

In older NVIDIA GPUs, the following conditions are necessary in order for memory

coalescing to occur: 3

1. The 16 accesses are for either 32-, 64-, or 128-bit words;

2. All 16 words lie in the same memory segment;

3. Threads access the words in sequence;

4. Arrays are indexed using one of a few common indexing patterns.

In order to aid in memory coalescing, it is important that device allocations be properly

aligned. Ensuring that the necessary and sufficient conditions for memory coalescing are

met is a subtle matter, particularly for higher dimensional arrays.

1.2.7 Example: Array Maximum

The previous two examples have computed element-wise transformations of an array. An

example that is not an element-wise transformation is determination of the maximum

value of an array. To do this efficiently on a GPU using CUDA, we must use a parallel

algorithm. Recall that CUDA imposes a two-level decomposition of the problem into a

grid of thread blocks. Because of this constraint, we will perform a two-phase computa-

tion: have each thread block compute its local maximum, and then compute the maximum

of the local maxima.
3With newer NVIDIA GPUs, the details of these conditions are different.
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Figure 1.4: Logarithmic fan-in computation of the maximum element. A CUDA imple-
mentation of array maximum has each thread block compute its local maximum using a
logarithmic fan-in.

Each thread block will compute its local maximum through a logarithmic fan-in using

shared memory. For a thread block with n elements, there will be n − 1 calls to max done

in log2 n iterations. This is shown schematically in Figure 1.4.

The kernel code for a naive implementation of the local maximum computation is given

in Listing 1.5. It takes as arguments the input array in for which the maximum value is

desired, an output array in which to write the results for the thread block-local maxima,

and the length of the input array. It begins by declaring and loading the shared memory

that will be used when performing the logarithmic fan-in. Once shared memory has been

loaded, the fan-in is performed: in the first iteration, half the threads do work; in the

second, a quarter do work; in the third, an eighth do work, and so on. Finally, the thread

with the lowest index—the ‘leader’ thread—writes the local maximum for the block to the

output array.

The second phase of the computation of the maximum is performed in the wrapper

code, given in Listing 1.6. The code here is similar to the wrapper code for the forward

difference operation in Listing A.2, with some additions: an intermediate array is required

for the results from the computation of block-local maxima, and after invoking the kernel,

the maximum of local maxima is computed by the CPU.

12



__global__ void
maximum_kernel(const float *in, float *out, const unsigned len)
{

extern __shared__ float scratch[];

// Each thread loads one element from device mem -> shared mem.
const unsigned i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < len)

scratch[threadIdx.x] = in[i];
// Wait for loading to be complete.
__syncthreads();

// Determine block maximum using shared memory.
for (unsigned s = 1; s < blockDim.x; s *= 2)
{

const unsigned idx = 2 * s * threadIdx.x;
if (idx + s < blockDim.x && idx + s < len)

scratch[idx] = max(scratch[idx], scratch[idx + s]);
// Must synchronize after writing to shared memory to make
// changes visible to other threads in the block.
__syncthreads();

}

// Leader thread writes results for the block.
if (threadIdx.x == 0)

out[blockIdx.x] = scratch[0];
}

Listing 1.5: A CUDA kernel to compute the block-local maxima

13



float
maximum_wrapper (const float *in, const unsigned len)
{

const dim3 block_dim (128, 1, 1);
const dim3 grid_dim ((unsigned)ceilf((float)len / 128f), 1, 1);

// The number of elements in the intermediate array.
const unsigned intermediate_len = grid_dim.x;
// The size, in bytes, of the intermediate array.
const size_t intermediate_size = intermediate_len * sizeof(float);

const size_t in_size = len * sizeof (float);

// How much shared memory to allocate per block?
const size_t smem_size = 128 * sizeof (float);

// Allocate arrays in device memory.
float *in_d;
float *intermediate_d;

cudaMalloc ((void **)&in_d, in_size);
cudaMalloc ((void **)&intermediate_d, intermediate_size);

// Load up the device input array.
cudaMemcpy (in_d, in, in_size, cudaMemcpyHostToDevice);

// Invoke the kernel to determine block maximums.
maximum_gpu_kernel<<<grid_dim, block_dim, smem_size>>>

(in_d, intermediate_d, len);

// Compute the maximum of all the blocks on the CPU.
float *intermediate = new float[intermediate_len];

cudaMemcpy (intermediate, intermediate_d, intermediate_size,
cudaMemcpyDeviceToHost);

float result = intermediate[0];
for (unsigned i = 1; i < intermediate_len; ++i)

result = max(result, intermediate[i]);

delete [] intermediate;

cudaFree (intermediate_d);
cudaFree (in_d);

return result;
}

Listing 1.6: CUDA wrapper to compute the maximum element of an array
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1.3 Toward Easier General-Purpose GPU Programming?

The implementation of the array maximum just given is already significantly more compli-

cated than the previous examples due to the use of a non-trivial parallel algorithm. Unfor-

tunately, it is also very bad code: a significantly longer and more complex implementation

can be more than an order of magnitude faster [Harris, 2008].

CUDA code is low-level. Compared to programming in sequential C++ for the CPU,

CUDA (a) has additional address spaces and data transfers to worry about; (b) does not au-

tomatically cache data, except with the latest GPUs; (c) involves more complicated array

indexing; (d) requires non-trivial parallel algorithms and synchronization in many realistic

applications; (e) involves much more boilerplate code; and (f) requires significant care and

expertise in order to get good performance. Use of higher-dimensional arrays further com-

plicates array indexing. It is easy to write CUDA code that is either incorrect or inefficient.

It would be a great boon if application-level GPU programming could be made simpler.
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CHAPTER 2

RELATED WORK

An obvious way to program GPUs at a higher level than CUDA is to create a new general-

purpose programming language with GPU support. Examples of this approach include

Brook, a C-like language that treats the GPU as a stream processor [Buck et al., 2004],

and BSGP, which applies the bulk-synchronous programming model for GPU program-

ming [Hou et al., 2008].

Creating a new general-purpose language is a huge undertaking. The design space for

general-purpose programming languages is enormous. Furthermore, significant infras-

tructure is required: not only a compiler or interpreter need be created, but also the de-

bugger, profiler, and numerous libraries that one expects from a practical general-purpose

programming language. Existing languages have been extended with GPU programming

support, which requires less implementation effort than creating a new language. CUDA

itself takes this approach, being a dialect of C++. Other examples include PyCUDA,

which allows CUDA programming from within Python and adds some higher-level sup-

port [Kloeckner et al., 2009]; Copperhead [Catanzaro et al., 2010] and Theano [Bergstra

et al., 2010], systems for Python that can compile subsets of Python code to GPU code; a

system to translate OpenMP-annotated code into GPU code [Lee et al., 2009b]; and Ac-

celerator, which adds data-parallel constructs to .NET languages to allow GPU program-

ming [Tarditi et al., 2006].

Several array libraries for GPU programming have also been created. The library ap-
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proach has a low implementation cost and has the advantage of not requiring new pro-

gramming languages or tools. However, in most programming languages, compile-time

optimization at the library level is either not possible, limited, or awkward [Veldhuizen

and Gannon, 1998, Veldhuizen, 1998], so the library approach is more suitable for cases

where fast development time is valued above performance. An example is the Mars sys-

tem, which implements a MapReduce framework in C++ for GPUs [He et al., 2008, Dean

and Ghemawat, 2008].

In contrast to a general-purpose language designed to handle a wide variety of prob-

lems, a domain-specific language is designed for a specific, constrained problem domain.

Examples are numerous and are discussed by both Bentley [1986] and van Deursen et al.

[2000].

Often, domain-specific languages have been implemented from scratch and have their

own syntax, semantics, and interpreters or compilers. Because they are special-purpose,

they can provide a very high level of abstraction. Because they are implemented as lan-

guages rather than libraries, they have control over the optimizations applied and the code

that is generated, rather than relying on an existing language’s compiler to generate effi-

cient code.

Although such languages are special-purpose, implementation effort may be high if

they are written as stand-alone tools. Furthermore, as a stand-alone domain-specific lan-

guage evolves, it is tempting to add general-purpose features, which can destroy the sim-

plicity and elegance of a little language.

The temptation to add general-purpose features and implementation effort can both be

reduced by embedding a domain-specific language within another language [Hudak, 1996,

1998]. Example uses include drawing and animation [Kamin and Hyatt, 1997, Elliott et al.,

2003], hardware design [Bjesse et al., 1999], defining parsers [Hutton and Meijer, 1998,

Niebler, 2007], and deriving high-performance numerical solvers for partial differential

equations from mathematical descriptions [Dinesh et al., 2000].

Several domain-specific embedded languages for GPU programming have been cre-

ated. An early example is Sh, a shader and stream programming language implemented

in C++, making heavy use of the template mechanism and preprocessor [McCool et al.,
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2002, 2004].

More recently and most similar to the work presented in this thesis are array lan-

guages embedded within Haskell. These array languages feature collective operations, such

as element-wise transformations and prefix scans, as their fundamental array primitives.

These collective operations are sufficient to express a wide variety of problems and have

well-known parallel implementations [Blelloch, 1989, 1996]. Accelerate [Lee et al., 2009a]

and Nikola [Mainland and Morrisett, 2010] are two examples. Accelerate provides an im-

perative array language that is dynamically compiled into CUDA code implementing the

array program. Nikola provides an applicative array language that is similarly dynami-

cally compiled into CUDA code.
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CHAPTER 3

THE BARRACUDA LANGUAGE

Barracuda is a domain-specific language for array processing that emphasizes simplicity

and efficient code generation. Barracuda is a purely functional language for defining array

operations, embedded within the functional programming language Haskell [Peyton Jones

et al., 2003].

Barracuda was designed to be used to generate GPU implementations of array oper-

ations, specifically for the following use case: the user (i.e., programmer) wants to accel-

erate parts of a C++ application by running certain array operations on a GPU. The user

expresses the operations in Barracuda, then uses the Barracuda compiler to generate pro-

cedures that hide most of the details of working with a GPU.

We begin this chapter with an introduction in tutorial form. This tutorial assumes

that the reader is not familiar with Haskell, and attempts to explain enough so that the

Barracuda programs will be understandable. After the tutorial, the Barracuda language is

described in detail, followed by a detailed discussion of the optimization and compilation

processes. We conclude this chapter with a comparison of Barracuda to related work.

3.1 A Tutorial Introduction

Getting Started Barracuda is special-purpose and has no notion of input or output,

so it is not possible to write Hello World. Instead, we’ll write a simple example discussed

earlier: element-wise computation of the sine of an array.
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A program in Barracuda is in fact a Haskell program. We begin by importing the mod-

ule that defines the Barracuda language

import Language.Barracuda

We then write our function to compute the sine of each element. We will be writing a

Haskell function that uses the Barracuda constructs. The first line is its type signature

arraySine :: AExp Float -> AExp Float

This says that the value arraySine is a Haskell function that takes an AExp Float and

returns an AExp Float. The type AExp Float is a type defined by Barracuda, repre-

senting a floating-point array that resides on the GPU. In other words, arraySine is a

function that takes a floating-point array and returns a floating-point array. Next comes

the function definition

arraySine x = amap sin x

arraySine takes an argument x, and returns the expressions amap sin x, which ap-

plies the sin function element-wise to x. sin is a function from the standard libraries

in Haskell, and has been overloaded to work with Barracuda types. amap is a function

defined in Barracuda analogous to the standard map function found in Haskell and many

other languages that operates on lists, and is one of the fundamental constructs by which

Barracuda makes use of the GPU. amap takes a unary scalar function as its first argument,

and an appropriately-typed array as its second argument. It is compiled into code that

applies the function to every element of the array in parallel.

Because Barracuda is used to generate CUDA code that the user will call from a larger

C++ application, the user will likely want explicit control over the names given to the

generated procedures and arguments. We next annotate the arraySine function with

name information using the Function data type defined by Barracuda

arraySineFun :: Function
arraySineFun = Function arraySine "array_sine" ["x"] "result"
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import Language.Barracuda

arraySine :: AExp Float -> AExp Float
arraySine x = amap sin x

arraySineFun :: Function
arraySineFun = Function arraySine "array_sine" ["x"] "result"

main :: IO ()
main = compile defaultCudaConfig files [arraySineFun]

where files = ("array_sine_cuda.cuh", "array_sine_cuda.cu")

Listing 3.1: The complete Barracuda array sine program

This says that the value arraySineFun has type Function, and is equal to the right-

hand side. The Function constructor takes four arguments: a Barracuda function, a name

to give the generated procedure, a list of names for the input arguments, and a name for

the output argument.

Finally, we write the entry point into the Haskell code

main :: IO ()
main = compile defaultCudaConfig files [arraySineFun]
where files = ("array_sine_cuda.cuh", "array_sine_cuda.cu")

The entry point to a Haskell program is named main and has type IO (). That is, it is

an IO action that returns (), which is the Haskell analog of a void type in C++. We see

in the definition of main the use of local definitions in Haskell using the where form:

files is equal to the pair of file names given in its definition. One could equivalently

replace the occurrence of files in main with its definition. This Haskell program simply

compiles the array sine function into CUDA code using Barracuda’s compile function

with the defaultCudaConfig compiler configuration, generating a CUDA header file

and a CUDA source file with the given names.

The complete example is shown in Listing 3.1. With Barracuda properly installed, as-

suming the example was saved to a file named array_sine_cuda.hs, the code could be

compiled with

> runhaskell array_sine_cuda.hs
writing array_sine_cuda.cuh
writing array_sine_cuda.cu
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The generated code is written to the indicated files. The user would then include the

header (i.e., array_sine_cuda.cuh) in his or her application, which exposes a proce-

dure with the signature

void
array_sine (const gpu_float_array &x, gpu_float_array_view result);

This procedure implements the array sine transformation on the GPU. We won’t go into

more detail about the generated code at this point, but this should give a taste of what

programming with Barracuda is like.1 In general, the Barracuda workflow is this:

1. Write Barracuda functions for the desired array operations.

2. Annotate the functions with naming information.

3. Use Barracuda’s compile function to generate CUDA code.

4. Use the generated procedures from C++.

The details of the CUDA code are hidden from the user; the user only needs to be aware

that the gpu_* types indicate values that reside on the GPU.

3.1.1 Mapping over Multiple Arrays

A more complicated array operation is SAXPY—single-precision alpha x plus y—from

BLAS Level 1 [Lawson et al., 1979]. This operation takes a floating-point scalar α and two

floating-point arrays x and y and computes the expression α ∗ x + y, which is a floating-

point array.

A Barracuda implementation is shown in Listing 3.2. Like the previous example, we

begin by importing the module for the Barracuda language. We then write the Barracuda

version of SAXPY

saxpy :: SExp Float -> AExp Float -> AExp Float -> AExp Float
saxpy alpha x y = azipWith (+) (amap (* alpha) x) y

1For a complete example of a Barracuda program, the generated code, and a handwritten implementation,
see Appendix A.
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import Language.Barracuda

saxpy :: SExp Float -> AExp Float -> AExp Float -> AExp Float
saxpy alpha x y = azipWith (+) (amap (* alpha) x) y

saxpyFun :: Function
saxpyFun = Function saxpy "saxpy" ["alpha", "x", "y"] "result"

main :: IO ()
main = compile defaultCudaConfig files [saxpyFun]

where files = ("saxpy.cuh", "saxpy.cu")

Listing 3.2: An implementation of SAXPY in Barracuda

We see some new things here. First, saxpy is a function that takes three inputs: the first of

type SExp Float and the latter two of type AExp Float. SExp Float is the Barracuda

type for floating-point scalars. SExp stands for ‘scalar expression’ and AExp stands for

‘array expression’, and both are parameterized by the element type.

Second, the definition of saxpy uses the azipWith function provided by Barracuda.

This function takes three arguments: a binary scalar function and two appropriately-typed

array arguments. azipWith is an extension of amap to two input arrays instead of a single

input array. Similarly, it is compiled into code that executes the transformation on each

array element in parallel.2

The third new thing we see is use of Haskell’s section syntax. The first argument to

azipWith is (+). Putting parentheses around an infix function treats it as a prefix func-

tion. That is, 7 + 35 is equivalent to (+) 7 35. The first argument to azipWith is a

binary function, so in this case we are supplying the addition function as the first argu-

ment.

The fourth new thing we see in this example is nested use of Barracuda’s array prim-

itives. The second argument of azipWith is (amap (* alpha) x). Recall that amap

takes two arguments, a unary scalar function and an array, and returns an array. In this

case, we give the ‘times-alpha’ function as the first argument, and the array x as the second

argument. This is another example of Haskell’s section syntax, as well as partial function

2The name azipWith was chosen to mirror Haskell’s zipWith function on lists. In dynamically typed
languages, these are usually both called ‘map’. However, it is difficult to ascribe a type to a variadic map
function in most statically typed languages, which is the main reason why the map and zipWith functions
have different names, rather than having a generic function that encompasses both.
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application: (* 7) 6 is equivalent to 6 * 7, which is equivalent to (6 *) 7.

One might worry about the use of nested array operations like this, as in a naive im-

plementation, temporary arrays would be introduced to compute each nested array subex-

pression. Wary of this prospect, one might instead write SAXPY in Barracuda as follows:

saxpy2 :: SExp Float -> AExp Float -> AExp Float -> AExp Float
saxpy2 alpha x y = azipWith f x y

where f x’ y’ = alpha * x’ + y’

This definition passes the local function f as the first argument to azipWith, which com-

putes both the multiplication and the addition. However, this is unnecessary: the Bar-

racuda compiler fuses nested use of these array primitives, and the code generated from

compiling either saxpy or saxpy2 is identical, and temporary arrays are allocated in nei-

ther.

3.1.2 Reducing Arrays

Computing the sum of an array, for example, is not an element-wise transformation. To

express this operation, we need to make use of a second array primitive that Barracuda

provides: array reduction. The Barracuda function areduce takes three arguments: an

associative binary function, an initial scalar value, and an array. Given the associative bi-

nary function ⊕, the initial scalar value i, and the array a = [a0, a1, a2 . . . an], areduce⊕ i a

computes the scalar value

i⊕ a0 ⊕ a1 ⊕ a2 ⊕ . . .⊕ an.

Reductions can be efficiently computed in parallel using a tree reduction. Summation is

expressed as an array reduction with the addition function and the identity for addition:

asum :: AExp Float -> SExp Float
asum x = areduce (+) 0 x

The function takes a floating-point array and returns a floating-point scalar. We see one

more new thing here: scalar literals. Number literals can be overloaded in Haskell, and

here the value 0 represents a constant value of type SExp Float.
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import Language.Barracuda

rmse :: AExp Float -> AExp Float -> SExp Float
rmse x y = sqrt (sumDiff / len)

where
len = intToFloat (alength x)
sumDiff = areduce (+) 0 (amap (^2) (azipWith (-) x y))

rmseFun :: Function
rmseFun = Function rmse "rmse" ["input1", "input2"] "result"

main :: IO ()
main = compile defaultCudaConfig files [rmseFun]

where files = ("rmse.cuh", "rmse.cu")

Listing 3.3: An implementation of RMSE in Barracuda

The array reduction primitive is useful for a variety of operations, e.g., summation,

maximum, or logical conjunction. This array primitive is compiled by the Barracuda com-

piler into the efficient, two-phase logarithmic fan-in reduction for the GPU discussed in

Chapter 1.

3.1.3 Putting It All Together

We now show a more complicated example that uses the constructs introduced so far. Root

mean squared error is a commonly used measure of error, defined as

RMSE(θ1, θ2) =

√∑n
i=1(x1,i − x2,i)2

n
.

A Barracuda implementation is given in Listing 3.3. This example uses amap, azipWith,

areduce, as well as several new functions. The Barracuda function alength gives the

length of an array. intToFloat casts a value of type SExp Int to a value of type SExp

Float; Both Haskell and Barracuda are strongly and statically typed, and neither per-

forms implicit type conversions.

Again, one might be worried about the nested use of azipWith within amap, and the

nested use of that within areduce. Again, such worry would be misplaced, because the

Barracuda compiler fuses these nested array operations into a complicated array reduction.

In the generated code, a CUDA procedure with the following signature is exported
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void rmse (const gpu_float_array &input1,
const gpu_float_array &input2,
float &result);

We will not look closer into the generated code at this point, more than observing that the

Barracuda function was compiled into more than 150 source lines of CUDA code.

3.2 Language Definition

Barracuda is an embedded domain-specific language for array processing, implemented

in Haskell, and designed for generating efficient CUDA code to be called from a larger

application. Like much of the related work, Barracuda’s programming model is based

on collective array operations that can be straightforwardly compiled to a GPU. In the

particular case of Barracuda, these primitive operations are map, reduce, and slice. In this

section we describe the interface exposed to a programmer using Barracuda.

Barracuda is purely functional; it has no notion of assignment or other side effects. A

Barracuda program is a Haskell function operating on Barracuda expressions. Barracuda

supports scalars, arrays, and matrices. SExp, AExp, and MExp are the types for scalar,

array, and matrix expressions.

data SExp a
data AExp a
data MExp a

These data types are abstract, i.e., their constructors are not exported.

Each of the three expression type constructors is parameterized by its element type.

Only a limited set of types can be used as element types; such types are members of a

special type class.

class (Eq a, Ord a, Show a, Typeable a) => Scalar a where
-- definition omitted

instance Scalar Int
instance Scalar Float
instance Scalar Double
instance Scalar Bool
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This set of allowed element types is very limited, but it maps naturally onto the set of types

supported in GPU code in CUDA, which is Barracuda’s primary target language.

Notice that the type of Barracuda expressions is determined by both expression rank

and element type. Although we omit formal typing rules in this thesis, Barracuda is

strongly statically typed, and trying to express a type-incorrect Barracuda program results

in a Haskell type error.

3.2.1 Scalar Expressions

Numeric scalar expressions in Barracuda are instances of the appropriate Haskell type

classes:

instance Num (SExp Int)
instance Num (SExp Float)
instance Num (SExp Double)

instance Fractional (SExp Float)
instance Fractional (SExp Double)

instance Floating (SExp Float)
instance Floating (SExp Double)

Num, Fractional, and Floating are standard Haskell type classes for overloading many

common numeric operations. Making the Barracuda scalar expressions instances of these

classes allows one to write scalar literals and use arithmetic operations and many floating

point operations on scalars. Integer division and modulus, and a cast from integer to float

are provided specially, rather than implementing instances for the built-in Haskell type

class Integral to avoid having to define incomplete instances.

idiv, imod :: SExp Int -> SExp Int -> SExp Int
intToFloat :: SExp Int -> SExp Float

Equality tests are provided for Barracuda scalar expressions through a new typeclass.

class (Scalar a) => ExprEq a where
(==*) :: SExp a -> SExp a -> SExp Bool
(/=*) :: SExp a -> SExp a -> SExp Bool
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infix 4 ==*, /=*

instance ExprEq Int
instance ExprEq Float
instance ExprEq Double
instance ExprEq Bool

We cannot use Haskell’s built-in Eq typeclass for equality testing in Barracuda, since its

methods have the wrong type.

class Eq a where
(==) :: a -> a -> Bool
(/=) :: a -> a -> Bool

Specifically, the methods return a regular Bool, and not SExp Bool. For built-in infix

Haskell functions that are not easily overloaded, Barracuda uses the names appended with

an asterisk.

Comparison operators are also provided for the numeric scalar expressions.

class (Scalar a) => ExprOrd a where
(>*) :: SExp a -> SExp a -> SExp Bool
(>=*) :: SExp a -> SExp a -> SExp Bool
(<*) :: SExp a -> SExp a -> SExp Bool
(<=*) :: SExp a -> SExp a -> SExp Bool

infix 4 >*, >=*, <*, <=*

instance ExprOrd Int
instance ExprOrd Float
instance ExprOrd Double

maxVal, minVal :: (ExprOrd a) => SExp a -> SExp a -> SExp a

Similarly to the equality testing functions, the methods of Haskell’s built-in Ord class have

the wrong type, so Barracuda provides a new type class. The maxVal and minVal func-

tions return the maximum or the minimum of two scalar expressions, respectively.

Boolean literals are written true and false. Boolean expressions can be combined

using conjunction, disjunction, and negation.3

3The terrible name ‘snot’—short for ‘scalar not’—was chosen instead of simply ‘not’ so that the Prelude
function would not be shadowed.
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true, false :: SExp Bool
(&&*), (||*) :: SExp Bool -> SExp Bool -> SExp Bool
snot :: SExp Bool -> SExp Bool

A Boolean expression can be used to write a scalar conditional:

scond
:: (Scalar a)
=> SExp Bool -- predicate
-> SExp a -- value when true
-> SExp a -- value when false
-> SExp a

This function acts like an if-then-else in Haskell, or the ternary operator in C.

Finally, explicit sharing can be expressed using the slet function:

slet
:: (Scalar a, Scalar b)
=> SExp a -- expression to bind
-> (SExp a -> SExp b) -- body
-> SExp b

This is the Barracuda analogue of a let-expression in Haskell, allowing one to indicate that

the value of a named subexpression should be computed once and reused.

3.2.2 Array Expressions

There are no terminal array expressions in Barracuda. Hence, the only place a term of type

AExp a can appear is in the definition of a Haskell function that takes an argument of type

AExp a.

The length of an array can be determined using alength:

alength :: AExp a -> SExp Int

An element-wise transformation of one, two, or three arrays can be expressed using

the array mapping functions.

amap
:: (Scalar a, Scalar b)
=> (SExp a -> SExp b)
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-> AExp a
-> AExp b

azipWith
:: (Scalar a, Scalar b, Scalar c)
=> (SExp a -> SExp b -> SExp c)
-> AExp a
-> AExp b
-> AExp c

azipWith3
:: (Scalar a, Scalar b, Scalar c, Scalar d)
=> (SExp a -> SExp b -> SExp c -> SExp d)
-> AExp a
-> AExp b
-> AExp c
-> AExp d

An array can be reduced to a scalar value using the array reduction function areduce,

which takes a reducing function, an initial value, and an array expression as arguments:

areduce
:: (Scalar a)
=> (SExp a -> SExp a -> SExp a) -- reducing function
-> SExp a -- initial value
-> AExp a -- array to reduce
-> SExp a

The value of an array reduction expression is only well-defined if the reducing function is

associative. This is a requirement that cannot be captured in Haskell’s type system.4

Finally, a slice of an array can be extracted.

type SliceInfo = (SExp Int, SExp Int, SExp Int)

aslice :: (Scalar a) => AExp a -> SliceInfo -> AExp a

Slice information is represented as a triple of integer expressions, denoting the start index,

stop index, and stride. In a value of type SliceInfo, the stride must be non-zero and the

stop index greater than the start. Furthermore, both the start and stop indexes must be less

4Many floating-point operations are neither associative nor commutative. However, given that manipulat-
ing floating-point arrays is the primary use of GPUs, perhaps the non-associativity and non-commutativity of
floating-point operations combined with parallel algorithms is not so much a problem in practice.
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than the extent of array dimension that the slice information corresponds to. The result of

an array slice expression is an array consisting of the elements from the original array at

indexes [istart, istart+stride . . . istop].

3.2.3 Matrix Expressions

Like arrays, there are no terminal matrix expressions in Barracuda, and the only place a

term of type MExp a can appear is in the definition of a Haskell function that takes an

argument of type MExp a.

The number of rows and number of columns can be retrieved using the mrows and

mcols functions, both of type (Scalar a) => MExp a -> SExp Int.

An element-wise transformation of one or two matrices can be expressed using the

matrix mapping functions.

mmap
:: (Scalar a, Scalar b)
=> (SExp a -> SExp b)
-> MExp a
-> MExp b

mzipWith
:: (Scalar a, Scalar b, Scalar c)
=> (SExp a -> SExp b -> SExp c)
-> MExp a
-> MExp b
-> MExp c

A matrix can be reduced to a scalar value using the matrix reduction function mreduce,

which takes a reducing function, an initial value, and a matrix expression as arguments:

mreduce
:: (Scalar a)
=> (SExp a -> SExp a -> SExp a) -- reducing function
-> SExp a -- initial value
-> MExp a -- matrix to reduce
-> SExp a

As in the case with array reduction, the value of the matrix reduction expression is only

well-defined if the reducing function is associative.
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Finally, a sub-matrix can be extracted using mslice:

mslice
:: (Scalar a)
=> MExp a -- matrix to slice
-> SliceInfo -- row slice
-> SliceInfo -- column slice
-> MExp a

Slicing a matrix requires slice information for both the rows and columns, in that order.

3.3 Representation of Barracuda Programs

The functions listed in the previous section are smart constructors that build up abstract

syntax trees representing the Barracuda functions. Following Elliott et al. [2003], these

smart constructors perform optimizations from the bottom up, including constant folding

and certain algebraic simplifications.

The abstract syntax trees in Barracuda comprise a family of data types, SExp a for

scalar expressions of type a, AExp a for array expressions with element type a, and MExp

a for matrix expressions with element type a. These types are abstract and not exposed

to Barracuda programmers. The type constructors SExp, AExp, and MExp are defined as

GADTs, which allows the type system of the object language to be embedded within the

type system of the metalanguage, making ill-typed object language expressions impossible

to construct [Xi et al., 2003, Rhiger, 2003].

Definitions of these type constructors are shown in Listings 3.4, 3.5, and 3.6. Most of

these have analogous smart constructors, described in the previous section, but some, such

as SVar, AVar, and MVar are only used internally and have no direct smart constructor

analog.

Barracuda functions are represented using higher-order abstract syntax [Pfenning and

Elliott, 1988]. This permits the use of functions in the metalanguage (i.e., Haskell in this

case) to represent functions in the object language, allowing reuse of the metalanguage’s

name binding mechanism. In particular, in Barracuda, the constructors representing let-

expressions, reduction, and mapping use Haskell functions in their representation.
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data SExp :: * -> * where
-- scalar terms: constants and variables
SCFloat :: Float -> SExp Float
SCInt :: Int -> SExp Int
SCBool :: Bool -> SExp Bool
SVar :: (Scalar a) => String -> SExp a

-- let-expressions
SLet :: (Scalar a, Scalar b)

=> SExp a -- expr. to bind
-> (SExp a -> SExp b) -- body
-> SExp b

-- primitive scalar operations (e.g. addition) omitted
...

-- array / matrix reductions
AReduce :: (Scalar a)

=> (SExp a -> SExp a -> SExp a) -- reducer
-> SExp a -- initial value
-> AExp a -- array to reduce
-> SExp a

MReduce :: (Scalar a)
=> (SExp a -> SExp a -> SExp a) -- reducer
-> SExp a -- initial value
-> MExp a -- matrix to reduce
-> SExp a

-- array / matrix indexing
AIdx :: (Scalar a)

=> String -- array variable
-> SExp Int -- index value
-> SExp a

MIdx :: (Scalar a)
=> String -- matrix variable
-> SExp Int -- row index
-> SExp Int -- column index
-> SExp a

-- array / matrix accessors
ALen :: (Scalar a) => AExp a -> SExp Int
MRows :: (Scalar a) => MExp a -> SExp Int
MCols :: (Scalar a) => MExp a -> SExp Int

Listing 3.4: Representation of scalar expressions in Barracuda.
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data ASliceInfo = ... -- definition omitted

data AExp :: * -> * where
-- array variables
AVar :: (Scalar a) => String -> AExp a

-- array slices
ASliceVar :: (Scalar a) => ASliceInfo -> String -> AExp a

-- array map expressions
AMap :: (Scalar a, Scalar b)

=> (SExp a -> SExp b)
-> AExp a
-> AExp b

AMap2 :: (Scalar a, Scalar b, Scalar c)
=> (SExp a -> SExp b -> SExp c)
-> AExp a
-> AExp b
-> AExp c

AMap3 :: ... -- definition omitted

Listing 3.5: Representation of array expressions in Barracuda.

data MSliceInfo = ... -- definition omitted

data MExp :: * -> * where
-- matrix variables
MVar :: (Scalar a) => String -> MExp a

-- matrix slices
MSliceVar :: (Scalar a) => MSliceInfo -> String -> MExp a

-- matrix map expressions
MMap :: (Scalar a, Scalar b)

=> (SExp a -> SExp b)
-> MExp a
-> MExp b

MMap2 :: (Scalar a, Scalar b, Scalar c)
=> (SExp a -> SExp b -> SExp c)
-> MExp a
-> MExp b
-> MExp c

Listing 3.6: Representation of matrix expressions in Barracuda.
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3.4 Compilation Details

3.4.1 Compiling the Array Primitives

In the simplest case, a Barracuda function does not use any of the array primitives, and

therefore consists only of scalar code. Such code is easily compiled into CUDA. The inter-

esting cases involve use of the array primitives, which, when generating parallel code (see

section 3.4.8 for discussion of the alternative), are compiled into CUDA kernels and kernel

invocation code.

Map A map operation applies an n-ary scalar mapping function to n arrays element-

wise. A CUDA kernel is generated for the mapping function, and kernel invocation code

is inserted into the C++ wrapper code being generated. In the current implementation,

the generated kernel has each thread apply the mapping function to only a single set of n

elements. More work-efficient code would have each thread apply the function to multiple

elements, although it is not always a clear performance win; experimenting with this is left

as future work.

Reduce A reduce operation accumulates a scalar value by repeatedly applying a binary

reducing function to elements of an array. Similarly to the way the map operation is com-

piled, a CUDA kernel is generated for the reducing function, and kernel invocation code

is inserted into the C++ wrapper code being generated. The Barracuda compiler generates

code for reduction that uses a logarithmic fan-in: each CUDA thread block reduces a block

of elements from the array using shared memory, and after the kernel execution finishes,

the CPU performs a final reduction of the partial results. The reduction code Barracuda

generates is based on the final optimized implementation described by Harris [2008].

Slice A slice operation names a sub-array of a larger array. For instance, a slice of a

one-dimensional array specifies start index, stop index, stride, and the array to slice. In

the case of a slice operation that appears at the top level of a Barracuda function, special

copying routines provided by the Barracuda runtime are used. In the more interesting case
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where a slice expression occurs as an array argument of another array primitive, the slice

is compiled by translating indexes into the array slice into the appropriate indexes of the

original array. Barracuda’s array slices have no run-time reification, and are handled at

compile time.

3.4.2 Specifying Names for the Generated Code

Because Barracuda generates code meant to be called directly by a C++ programmer, it

is important that the generated procedures and their arguments have meaningful names.

This is done by annotating Barracuda functions with name information via the Function

data type mentioned in the tutorial section of this chapter:

data Function :: * where
Function

:: (Instantiable a)
=> a -- a Barracuda function
-> Id -- the name for the function
-> [Id] -- the names for inputs
-> Id -- the name for the output
-> Function

Function is a GADT whose sole constructor takes a Barracuda function (i.e., something

that is Instantiable, a type class for things that can be compiled, described shortly) and

wraps it up with name information that is used when compiling.

3.4.3 The compile Function

Barracuda’s compile function is the entry point into the compiler. It has the following

type:

compile
:: CompileConfig -- compiler options
-> (FilePath, FilePath) -- output filenames
-> [Function] -- annotated functions
-> IO ()

It takes configuration information (e.g., optimization settings), a pair of file names, a list

of name-annotated Barracuda functions, compiling the list of functions and writing the

results to a header file and source file specified by the file names.
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3.4.4 Runtime Representation

Barracuda functions are compiled into C++ procedures that invoke generated CUDA ker-

nels. The goal with Barracuda is to generate procedures to be called from a C++ appli-

cation. Barracuda defines C++ types corresponding to each of the Barracuda array and

matrix types.

This mapping is fairly straightforward. For scalar expressions, SExp Int in Barracuda

maps to int in C++; SExp Float maps to float in C++; and SExp Bool maps to bool

in C++. For array and matrix expressions, the C++ component of Barracuda defines the

template classes:

template <class T>
class gpu_array;

template <class T>
class gpu_matrix;

Barracuda expressions of type AExp Int are mapped to gpu_array<int>; AExp Float

is mapped to gpu_array<float>; and AExp Bool is mapped to gpu_array<bool>.

Matrix expressions are mapped similarly.

A Barracuda function is either a Haskell value of type (Scalar a) => SExp a,

(Scalar a) => AExp a, (Scalar a) => MExp a, or a Haskell function that takes

one of these types as an argument and returns a Barracuda function. This recursive defini-

tion is encoded by the Instantiable type class:

class Instantiable a where
... -- methods omitted

instance (Scalar a) => Instantiable (SExp a)
instance (Scalar a) => Instantiable (AExp a)
instance (Scalar a) => Instantiable (MExp a)

instance (Scalar a, Instantiable r) =>
Instantiable (SExp a -> r)

instance (Scalar a, Instantiable r) =>
Instantiable (AExp a -> r)

instance (Scalar a, Instantiable r) =>
Instantiable (MExp a -> r)
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For example, Haskell functions of type SExp Int -> SExp Int or MExp Float ->

MExp Float -> MExp Float are Barracuda functions, but Haskell functions of type

Int -> SExp Int or SExp Float -> AExp Float -> Float are not.

In Barracuda-generated code, outputs are passed by reference to the generated proce-

dures. Inputs, in contrast, are passed by constant reference. This convention eliminates

the need to do allocations for output variables within Barracuda-generated procedures at

the expense of placing the responsibility for memory management of output arguments

on the user of such code.

3.4.5 Closure Conversion

A function in Barracuda closes over its lexical environment. This presents a challenge for

compilation, as the target (i.e., CUDA) has no notion of closures. For instance, consider a

Barracuda function that adds a given scalar value to each element of an array:

addValue :: SExp Float -> AExp Float -> AExp Float
addValue x xs = amap (x +) xs

The mapping function (x +) contains the closed-over variable x. Lambda lifting [Johns-

son, 1985], or closure conversion, is used to transform the mapping function into a function

with no closed-over variables. While in the general case lambda lifting may need to be run

to fixed point, in Barracuda, only a single iteration is needed.

3.4.6 Array Fusion

The array primitives in Barracuda can be freely nested. For instance, in the root mean

square code, azipWith (array map on two arrays) occurs within amap, which occurs

within asum (an array reduction):

rmse :: AExp Float -> AExp Float -> SExp Float
rmse x y = sqrt (sumDiff / len)
where

len = intToFloat (alength x)
sumDiff = asum (amap (^2) (azipWith (-) x y))

38



Naive compilation of this expression would generate code that evaluates from the most

nested outward, using two temporary arrays and three CUDA kernel invocations. This

code would be correct but inefficient. However, since Barracuda is applicative and total, it

is always safe to fuse array arguments of map, reduce, and slice that are themselves array

expressions.

The map and reduce primitives both involve scalar functions. When compiling the

body of a CUDA kernel for an array expression, it is necessary to generate an indexing

expression for the array expression. When indexing a composite array expression, the

compiler composes the scalar functions in the appropriate way so that they are fused.

Consider a Barracuda function involving a multiply-and-add on an array with some

constants:

mulAdd :: AExp Float -> AExp Float
mulAdd xs = amap (+ 1) (amap (* 2) xs)

The array indexing code for this composite array expression would look roughly like

xs[idx] ∗ 2 + 1.

In Barracuda, fusion is guaranteed for array primitives that appear as array arguments:

no temporaries will be allocated, and only a single pass over the input arrays will be per-

formed. This fusion technique is most similar to that used in the Blitz++ array library for

C++ [Veldhuizen, 1998].

3.4.7 Automatic Use of Shared Memory Cache

Recall from Chapter 1 that graphics processors possess a limited on-chip shared memory

space that can be accessed much more quickly than device memory. When an array opera-

tion at each element is computed using that element’s value and the value of neighboring

elements, i.e., the operation is a stencil computation, large performance gains can often be

realized by generating CUDA code that uses the GPU’s shared memory cache rather than

accessing device memory repeatedly. The forward difference function is a simple example:

forwardDiff :: AExp Float -> AExp Float
forwardDiff x = azipWith (-) x’’ x’
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where x’ = aslice x (0, alength x - 1, 1)
x’’ = aslice x (1, alength x, 1)

The forward difference is computed by slicing the input array twice, with the two slices

offset by one element, and performing an element-wise subtraction on the two slices. In

this example, the value of each element of the output is computed using two adjacent

values of the input array.

The Barracuda compiler identifies array operations where use of shared memory is

applicable, and in such situations it generates code that uses shared memory cache. It

does this as follows:

1. Inspect the function being compiled, collecting all uses of array variables that are

used in two or more overlapping contexts.

2. When generating kernel code for the function, for each such array variable, generate

code to load the cache from device memory, and replace each corresponding array

indexing expression with code that accesses shared memory when in bounds and

that accesses device memory otherwise.

The context of an array variable refers to array slicing: an array variable can be referred

to in unsliced or in sliced fashion. Two contexts are said to overlap if it can be statically

determined that there exist array elements included in both contexts, and if the size of the

overlap falls within a certain range (determined by the CUDA thread block dimensions

used in the generated code).

Consider the forward difference code given above. Compiling this function without

shared memory optimization would result in a kernel that would have each thread read

from device memory twice, for two different elements of xs.

When compiling with shared memory optimization enabled, the compiler determines

that variable named xs is used in two difference slice contexts in this function (named by

xs’ and xs”). Furthermore, these contexts are statically known to overlap, as long as xs

contains more than two elements. In this case, the compiler generates a kernel in which the

majority of threads read from device memory only once: the threads first load from device

memory into shared memory, and then work from that. Conditional code is necessary to
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handle the cases where a thread is at the beginning or end of a thread block, or at the

beginning or end of the array.

3.4.8 Nested Data Parallelism

The array primitives in Barracuda are compositional, so they can be used in any type-

correct context, including within mapping and reducing functions. However, if the map

and reduce primitives were always compiled into parallel code, a nested data-parallel tar-

get language would be required. Unfortunately, the CUDA programming model does

not allow arbitrary nested data-parallel code—kernels can contain only sequential code.

Instead of implementing the well-known flattening transformation to convert nested data-

parallel programs into flat data-parallel programs [Blelloch et al., 1993], Barracuda takes a

simple, much less general approach based on hoisting.

To add the sum of one array to each element of a second, one might write

addSum :: AExp Float -> AExp Float -> AExp Float
addSum arr1 arr2 = amap f arr2

where f y = asum arr1 + y

Here, asum, an array reduction, is used within the mapping function given to amap. In this

case, the subexpression containing the nested array operation, asum arr1, is independent

of the argument of the mapping function, and can safely be hoisted out.

However, it is possible to write nested data-parallel functions that cannot be trans-

formed by hoisting. Consider the following:

ndp :: AExp Float -> AExp Float -> AExp Float
ndp arr1 arr2 = amap f arr2

where f v = asum (amap (\x -> x + v) arr1)

For each element v of arr2, this function would compute the sum of adding v to each

element of arr1. Here, the nested array operations cannot be hoisted out because they

depend upon the value of the array element given to the mapping function. When nested

array operations cannot be hoisted, the operation is implemented by emitting a sequen-

tial loop within the generated CUDA kernel. This is similar to the approach taken in
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Nikola [Mainland and Morrisett, 2010] and Copperhead [Catanzaro et al., 2010]. In such

cases, the Barracuda compiler emits a warning that the code will be inefficient: the princi-

pal motivation for using graphics processors is performance.

Earlier versions of Barracuda experimented with techniques to make expression of

troublesome constructs impossible, but all proved unsatisfactory. A design goal of Bar-

racuda was that it allow the array operations to be composed, and that it be as free of

restrictions as possible. Disallowing nested data-parallel programs through type system

techniques hindered expression, either by eliminating compositionality or preventing ker-

nel functions from closing over their environments.
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CHAPTER 4

EVALUATION

Barracuda allows declarative, type-safe programming of graphics processors at a much

higher level of abstraction than CUDA for a subset of array-based operations. It hides the

details of CUDA programming (except for the fact that arrays can reside in main memory

or in device memory). A Barracuda programmer need not worry about block and grid

dimensions, making use of shared memory, or array indexing within kernel code.

Because the primary motivation of using graphics processors for non-graphics uses is

performance, it is important that programs written in Barracuda are compiled into efficient

GPU code. To test this, the performance of Barracuda-generated GPU code was measured

in several benchmarks. The Barracuda-generated code for these benchmarks is competi-

tive with handwritten CUDA code, running no more than 50 percent slower, and in two

cases running faster. Benchmarks were also used to measure the impact of array fusion

and shared memory optimization, both of which can affect performance by large factors.

The remainder of this chapter contains these benchmark results and further discussion.

4.1 Experimental Methodology

I ran several commonly used benchmarks, such as operations from the BLAS library [Law-

son et al., 1979] and Black-Scholes option pricing, as well as several stencil operations to

demonstrate the basic viability of Barracuda and to show the performance impact of array

fusion and shared memory optimization. In most of these experiments, code generated
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by Barracuda was compared with handwritten CUDA code. All of the benchmarks were

run on a system with a quad-core Intel Q6600 CPU, 8 GB RAM, and a GeForce 8800GT

graphics card with 512 MB RAM, running 64-bit Ubuntu Linux 8.10 and CUDA 2.3.

In all the benchmarks, only the computation time is counted, not the time to copy data

between main memory and device memory. This is justified because the copying costs

will be the same for handwritten and Barracuda implementations. The purpose of these

benchmarks is to compare the performance of generated code and of other implementa-

tions and to show the impact of different optimizations; the overhead incurred by copying

is not germane.

These benchmarks ran within microseconds even for very large arrays. This compli-

cated the measurement of execution time, as such short runs approached the resolution of

the timers available on the system. To minimize this source of error and to get consistent

measurements, each benchmark was run repeatedly for thirty seconds, with the number

of runs recorded. Only the operation being timed was executed within this loop. The req-

uisite allocation and initialization of arguments was done outside of the timing loop. The

values for the input arguments were chosen pseudo-randomly. By increasing the mea-

surement time for the benchmarks, the average execution time per run could be easily

computed.

The benchmarks that work with one-dimensional arrays were run with arrays of power-

of-two sizes. The benchmarks that work with two-dimensional arrays were run with

square matrices with power-of-two dimensions. This was done for simplicity and also

because power-of-two arrays and matrices satisfy the memory alignment properties nec-

essary for good CUDA performance. Note, however, that the Barracuda-generated code is

not restricted to run with power-of-two arrays or square matrices, but is general.

4.1.1 Standard Benchmarks

Operations from the BLAS library [Lawson et al., 1979] and Black-Scholes option pricing

are benchmarks that frequently appear in work on systems for high-performance array

computing, as they test the basic viability of such systems. I compared the performance

of handwritten CUDA code provided in the CUDA SDK or the cuBLAS library to that of
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Barracuda-generated code.

The two operations chosen were SAXPY and SDOT. SAXPY takes a single-precision

float α and two single-precision float arraysX and Y and stores the array result α∗X+Y in

Y , and is expressed using a map operation in Barracuda. SDOT computes the dot product

of two single-precision floating-point arrays, and is expressed using a map and reduction

in Barracuda. Due to array fusion, the entire operation is compiled into a single array

reduction by the Barracuda compiler, and so this benchmark demonstrates the efficiency

of array reduction.

Results of these benchmarks are shown in Figure 4.1. For the SAXPY benchmark, we

see that the Barracuda version runs faster than the cuBLAS version for all tested array sizes,

which is a surprising result. There are two likely causes: (1) Barracuda and cuBLAS use

different thread block dimensions, and (2) the Barracuda-generated code has each thread

compute the value of a single output element, whereas the cuBLAS implementation has

each thread compute the value of multiple output elements.1

We see in the SDOT results that Barracuda performs slightly faster than cuBLAS in

all but one case; it is difficult to say why, especially without access to the source code for

the cuBLAS implementation. The performance profile for this benchmark looks strange,

particularly for array sizes between 26 and 216. This benchmark was re-run several times,

and the performance profile consistently appears this way.

A Barracuda version of Black-Scholes option pricing was compared to the implementa-

tion found in the CUDA 2.3 SDK examples. Black-Scholes option pricing is another exam-

ple of an element-wise array computation, but with a much more complex and expensive

transformation than SAXPY. This benchmark demonstrates the viability of a high-level lan-

guage for more realistic computations that one would like to run on a graphics processor.

We see that once the arrays are large enough to warrant running on a GPU, the perfor-

mance of the Barracuda version is within ten percent of the handwritten version from the

CUDA SDK.

The Black-Scholes benchmark points out a deficiency in Barracuda. The handwritten

1The source code for the cuBLAS implementation is not available, but these facts about what it is doing are
able to be determined using CUDA’s profiling facilities.
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rmse :: AExp Float -> AExp Float -> SExp Float
rmse x y = sqrt (sumDiff / len)

where
len = intToFloat (alength x)
sumDiff = asum (amap (^2) (azipWith (-) x y))

Listing 4.1: Root mean square error in Barracuda

version can evaluate both call and put option prices within a single pass, and work can

be shared between the two evaluations. In other words, two output arrays are returned.

However, only a single result can be returned by Barracuda programs, and so one would

have to execute two different Barracuda-generated procedures to evaluate both call and

put option prices. This would require two passes over the input arrays and would elimi-

nate the possibility of sharing computation between the two evaluations. Barracuda could

be made more generally usable by allowing functions to return multiple results.

4.1.2 Root Mean Square Error

To test the impact of array fusion, a benchmark from the RMSE program of Listing 4.1

was created, both with and without array fusion.2 The results are shown in Figure 4.2.

The difference is most dramatic when the input arrays are between 210 and 216 elements,

and tapers off when the arrays are larger. This unusual performance curve shows that for

medium-size arrays especially, the impact of array fusion is significant.

4.1.3 Shared Memory Optimization Benchmarks

To test the impact of shared memory optimization, I ran three stencil benchmarks: forward

difference, a two-dimensional Jacobi iterative solver, and a 15-point weighted moving av-

erage. These three benchmarks all demonstrate the combined use of map and slice array

primitives, and all three result in out arrays or matrices that are larger than the inputs.

Forward difference The forward difference function given in Chapter 3 and again in

Appendix A was tested with and without shared memory. We see in the results that once

2Note that Barracuda always uses array fusion when generating code. The non-fused version was synthe-
sized by calling several Barracuda-generated routines for the various nested subexpressions of RMSE.
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wmAvg
:: [Float] -- weights
-> AExp Float -- input array
-> AExp Float

wmAvg ws xs = foldr1 (azipWith (+)) slices
where

slices :: [AExp Float]
slices = zipWith weight [0..] ws

weight :: SExp Int -> Float -> AExp Float
weight i w = amap (* float w) slice

where
slice = aslice xs (i, sliceLen + i, 1)
sliceLen = alength xs - int (length ws)

Listing 4.2: Weighted moving average in Barracuda

the arrays become large enough, the performance of the shared memory version becomes

several times faster than the unoptimized version, and appears to approach a four times

speedup in the limit. One might expect the speedup of the shared memory version to

approach two at the limit, because each element of the array (with the exception of the

first and last) is read by two threads. In this case, the use of shared memory facilitates

memory coalescing, and so fewer overall memory transactions are required, explaining

the greater-than-two speedup.

Weighted moving average Weighted moving average is a complicated one-dimensional

stencil operation. For this benchmark, the code from Listing 4.2 was given the weights

for Spencer’s 15-point moving average. When the arrays become large, shared memory

optimization decreases runtime by a factor of eight.

Jacobi iterative solver Solving a two-dimensional discretization of Poisson’s equation

is a more complicated demonstration of a stencil computation than forward difference.

The two Barracuda implementations were also compared to two handwritten implemen-

tations. We see from the results that when the matrices become large enough, use of shared

memory improves performance by roughly a factor of two. The Barracuda versions per-

form worse than the handwritten versions, but are no more than forty percent slower. This

is likely because the array indexing code is slightly more complicated in the Barracuda
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versions compared to the handwritten versions; more care in code generation for two-

dimensional array operations might eliminate this performance difference.
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Figure 4.1: Performance results from semi-standard benchmarks. These benchmarks
demonstrate the basic viability of an array programming system.
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Figure 4.2: Benchmark results for RMSE
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Figure 4.3: Shared memory benchmark results
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CHAPTER 5

CONCLUSION

We have seen the difficulty of programming graphics processors correctly and efficiently

using CUDA. We have seen that a higher-level approach—namely, using an array-based

domain-specific language—can hide most of the complexity yet can still have performance

competitive with that of handwritten code.

Embedded Language Challenges Several challenges with embedded languages were

encountered during the numerous design iterations of Barracuda. First, the metalanguage

constrains the possible concrete syntax of an object language. With Haskell as a metalan-

guage these constraints are bearable, as Haskell supports definition of new infix operators

and overloading through type classes. However, one wishes for a more syntactically lib-

eral metalanguage: Haskell does not allow overloading of several built-in constructs (e.g.

conditional expressions, let-expressions, and lambda expressions), nor does it allow defi-

nition of mixfix functions.

Second, it is difficult to enforce certain static semantics of an object language statically

in the metalanguage. Given a typed metalanguage with a sufficiently powerful type sys-

tem, it is possible to embed the typing discipline of the object language into the type system

of the metalanguage, causing object language type errors to be type errors in the metalan-

guage. (This is an issue that has been examined formally, e.g., by Rhiger [2003].) In the case

of this thesis, Haskell 98 with the addition of GADTs has a type system powerful enough

to embed Barracuda’s typing discipline.
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The difficulty lies in static semantics not implied by the typing discipline of the object

language. For example, it would be desirable to statically guarantee against expression of

troublesome nested data parallel functions in Barracuda, yet not restrict the language in

other ways. Several attempts were made to encode this property into the Haskell types

for Barracuda functions, but all restricted the language in other undesirable ways. While a

metalanguage with a more expressive type system (e.g., full dependent types) could allow

embedding of more complicated static semantics, it would be a great boon to be able to

specify static semantics of an object language in a more explicit way than through the type

system of the metalanguage.

Third, it would be helpful for usability to be able to specify the error messages to be

reported when the static semantics of an object language are violated. If an object lan-

guage’s static semantics are enforced through the type system of the metalanguage, object

language-level errors are reported as type errors, which obscures the higher-level cause of

the error.

Future Work Barracuda is a very limited language. It is sufficiently expressive to describe

certain element-wise transformations on arrays and matrices, but is unable to express oper-

ations like matrix multiplication and sorting in a single function. A more generally useful

embedded array language would feature more array primitives, such as scan operations,

which alone can be used to express many realistic data-parallel algorithms [Blelloch, 1989].

The expressiveness of Barracuda could be further improved by allowing multiple results

to be returned from functions, i.e., by adding product types to the language. Furthermore,

the language could be made more reusable by adding rank polymorphism [Keller et al.,

2010], e.g., so that array map could be used to express element-wise operations on arrays

of arbitrary dimensionality.

Barracuda is designed to be used as an offline compiler for generating code to be used

in a performance-oriented C++ application. It would be advantageous if Barracuda could

also be used to access a graphics processor entirely from within Haskell, as both Acceler-

ate [Lee et al., 2009a] and Nikola [Mainland and Morrisett, 2010] allow.

There are several ways in which the generated code could be improved. For instance,
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elimination of unnecessary array bounds checking and specialization of kernels for array

arguments of given dimensions could both improve performance.

Finally, although Barracuda is compiled into CUDA code, a more useful array-centric

language might have multiple targets, e.g., CPUs, GPUs, the Cell processor, and other

high-performance architectures.
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APPENDIX A

FORWARD DIFFERENCE

IMPLEMENTATION

This appendix contains two implementations of the forward difference operator, an exam-

ple from Chapter 1: the handwritten CUDA version and the Barracuda-generated version,

both using shared memory. Recall the definition of the forward difference operator for an

array:

∆arr(x) = arr(x+ 1) − arr(x),

where x and x + 1 are valid indexes for arr. In this operation, with the exception of the

first and last array elements, each element is read twice, which makes the use of shared

memory beneficial.

The handwritten implementation is given in Figures A.1 and A.2. This is the same im-

plementation given in Chapter 1, and uses GPU shared memory to reduce device memory

traffic. The kernel, shown in Figure A.1, begins with a loading phase of shared memory,

where each thread loads one array element from device memory into thread block-shared

memory. After loading is complete, the actual forward difference computation occurs: if

the thread executing the kernel is within bounds, it writes the result for one output array

element. If the executing thread is at the right edge of its thread block, it needs to read

from device memory, as one of the input array element values that it requires is not loaded

into shared memory. Otherwise, the thread can get both of its required values from thread
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__global__ void
forward_diff_kernel (const float *in, float *out, const unsigned len)
{

// Declare block-shared memory.
extern __shared__ float scratch[];

// Get the output index assigned to this thread.
const unsigned i = blockIdx.x * blockDim.x + threadIdx.x;

// Load one element into shared memory & synchronize.
if (i < len)

scratch[threadIdx.x] = in[i];
// Synchronize within the thread block to make writes visible.
__syncthreads();

// Compute the difference. Threads on the end of a block
// have to read from device memory.
if (i < len - 1)

// If the executing thread is at the rightmost edge of a
// thread block, read from device memory, otherwise read from
// shared memory.
out[i] = threadIdx.x == blockDim.x - 1

? in[i + 1] - scratch[threadIdx.x];
: scratch[threadIdx.x + 1] - scratch[threadIdx.x];

}
}

Listing A.1: A handwritten forward difference CUDA kernel

block-shared memory that was loaded previously in the kernel. The wrapper procedure,

shown in Figure A.2, contains the necessary memory management and kernel invocation

code to actually run the kernel on the GPU. Note that in this handwritten wrapper proce-

dure, the in and out arguments point to locations in the system’s main memory, not into

GPU device memory. To run the operation on the GPU, then, requires copying the input

array before the kernel execution and copying the output array after kernel execution.

A Barracuda implementation of the forward difference is shown in Figure A.3. This

is a complete Haskell program that generates a header file and the source file shown in

Figure A.4. The generated code has similar overall structure to the handwritten version,

where a wrapper procedure invokes a kernel that does the actual work. The structure

of the kernel is also similar to the handwritten kernel from Figure A.1: first each thread

participates in a loading phase, in which an element of the input array in device mem-

ory is copied into shared memory. Then, each thread that is within bounds computes the
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void
forward_diff_wrapper(const float *in, float *out, const unsigned len)
{

// Allocate device memory for the arrays.
float *in_d;
float *out_d;

const size_t in_size = len * sizeof(float);
// The output is one element shorter than input.
const size_t out_size = (len - 1) * sizeof(float);

cudaMalloc((void **)&in_d, in_size);
cudaMalloc((void **)&out_d, out_size);

// Copy input array into device memory.
cudaMemcpy(in_d, in, in_size, cudaMemcpyHostToDevice);

// Set up and invoke the kernel.
const dim3 block_dim(128, 1, 1);
const dim3 grid_dim((unsigned)ceilf((float)len / 128f), 1, 1);
// How much shared memory to allocate per block?
const size_t smem_size = 128 * sizeof(float);

forward_diff_kernel<<<grid_dim, block_dim, smem_size>>>
(in_d, out_d, len);

// Copy results back into CPU memory.
cudaMemcpy(out, out_d, out_size, cudaMemcpyDeviceToHost);

// Release the device memory.
cudaFree(out_d);
cudaFree(in_d);

}

Listing A.2: A handwritten forward difference wrapper procedure
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import Language.Barracuda

forwardDiff :: AExp Float -> AExp Float
forwardDiff x = azipWith (-) x’’ x’

where x’ = aslice x (0, alength x - 1, 1)
x’’ = aslice x (1, alength x, 1)

forwardDiffFun :: Function
forwardDiffFun = Function forwardDiff "forward_diff" ["x"] "result"

main :: IO ()
main = compile shmemCudaConfig files [forwardDiffFun]

where
files = ("forward_diff.cuh", "forward_diff.cu")

Listing A.3: Forward difference in Barracuda

forward difference for a single output array element. The conditional code and indexing

code in this Barracuda-generated kernel is more complex than that found in the handwrit-

ten kernel; however, the CUDA compiler seems to do a good job optimizing the generated

code, judging from the benchmark results seen in Chapter 4.1 Note that the Barracuda-

generated wrapper procedure takes input and output array parameters that already reside

on the GPU, unlike the handwritten version that expected arguments to arrays in the sys-

tem’s main memory. This is done for the sake of performance: moving data between main

memory and device memory is the costliest GPU operation, and so Barracuda places that

responsibility on the caller.

1No handwritten implementation was used in the forward difference benchmarks, as forward difference
was used only to show the impact of shared memory optimization. Other benchmarks, such as Black-Scholes
call option pricing, show that the runtime of Barracuda implementations is very close to that of handwritten
implementations.
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// begin forward_diff.cu

#include "forward_diff.cuh"
#include "barracuda.hpp"

static __global__ void
kernel3 (const kernel_float_array x,

kernel_float_array_view result)
{

__shared__ float x_shared [256];
if (blockIdx.x * 256 + threadIdx.x < x.length())
{

x_shared[threadIdx.x] = x[blockIdx.x * 256 + threadIdx.x];
}
__syncthreads();
int i2 = blockIdx.x * 256 + threadIdx.x;
if (i2 < (x.length() - 1))
{

result[i2] = (blockIdx.x * 256 <= 1 + i2 &&
1 + i2 < 256 * (blockIdx.x + 1)

? x_shared[1 + i2 - blockIdx.x * 256]
: x[1 + i2])

-
(blockIdx.x * 256 <= i2 &&
i2 < 256 * (blockIdx.x + 1)

? x_shared[i2 - blockIdx.x * 256]
: x[i2]);

}
}

void forward_diff (const gpu_float_array &x,
gpu_float_array_view result)

{
const dim3 blockDims4 (256, 1, 1);
const dim3 gridDims5 (((x.length() - 1) + 255) / 256, 1, 1);
kernel3<<<gridDims5, blockDims4>>>(

kernel_float_array (x),
kernel_float_array_view (result));

}

// end forward_diff.cu

Listing A.4: A Barracuda-generated shared memory forward difference implementation
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